These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of hyperoxia on pulmonary O2 uptake kinetics following the onset of exercise in humans.
    Author: Wilkerson DP, Berger NJ, Jones AM.
    Journal: Respir Physiol Neurobiol; 2006 Aug; 153(1):92-106. PubMed ID: 16309978.
    Abstract:
    The purpose of this study was to examine the influence of hyperoxic gas (50% O2 in N2) inspiration on pulmonary oxygen uptake (V(O2)) kinetics during step transitions to moderate, severe and supra-maximal intensity cycle exercise. Seven healthy male subjects completed repeat transitions to moderate (90% of the gas exchange threshold, GET), severe (70% of the difference between the GET and V(O2) peak) and supra-maximal (105% V(O2) peak) intensity work rates while breathing either normoxic (N) or hyperoxic (H) gas before and during exercise. Hyperoxia had no significant effect on the Phase II V(O2) time constant during moderate (N: 28+/-3s versus H: 31+/-7s), severe (N: 32+/-9s versus H: 33+/-6s) or supra-maximal (N: 37+/-9s versus H: 37+/-9s) exercise. Hyperoxia resulted in a 45% reduction in the amplitude of the V(O2) slow component during severe exercise (N: 0.60+/-0.21 L min(-1) versus H: 0.33+/-0.17 L min(-1); P < 0.05) and a 15% extension of time to exhaustion during supra-maximal exercise (N: 173+/-28 s versus H: 198+/-41 s; P < 0.05). These results indicate that the Phase II V(O2) kinetics are not normally constrained by (diffusional) O2 transport limitations during moderate, severe or supra-maximal intensity exercise in young healthy subjects performing upright cycle exercise.
    [Abstract] [Full Text] [Related] [New Search]