These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of the interactions of a bifunctional inhibitor with alpha-thrombin by molecular modelling and peptide synthesis. Author: Yue SY, DiMaio J, Szewczuk Z, Purisima EO, Ni F, Konishi Y. Journal: Protein Eng; 1992 Jan; 5(1):77-85. PubMed ID: 1631048. Abstract: A potent thrombin inhibitor, [D-Phe45, Arg47] hirudin 45-65, that contains an active site-directed sequence D-Phe-Pro-Arg-Pro, an exosite specific fragment hirudin 55-65 (H55-65) and a linker portion hirudin 49-54, was designed based on the hirudin sequence [DiMaio et al. (1990) J. Biol. Chem., 265, 21698-21798]. A three-dimensional model of the complex between the B-chain of human thrombin and the inhibitor [D-Phe45, Arg47] hirudin 45-65 was constructed using molecular modelling starting from the X-ray C alpha coordinates of the thrombin-hirudin complex and the NMR-derived structure of the thrombin-bound hirudin 55-65. The contribution of the H49-54 fragment to the thrombin-inhibitor interaction was deduced by examining a series of analogs containing single glycine substitution and analogs with reduced number of residues within the linker. The results were consistent with the molecular modelling observations i.e. the H49-54 fragment serves the role of a spacer in the binding interaction and could be replaced by four glycine residues. The studies on the interaction of the exosite-directed portion of the inhibitor with thrombin using a series of synthetic H55-65 analogs demonstrated that residues AspH55 to ProH60 play a major role in binding to human thrombin where the side chains of PheH56, IleH59 and GluH57 showed critical contributions. Molecular modelling suggested that these side chains may contribute to inter- and intramolecular hydrophobic and electrostatic interactions, respectively.[Abstract] [Full Text] [Related] [New Search]