These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NO-1886 (ibrolipim), a lipoprotein lipase activator, increases the expression of uncoupling protein 3 in skeletal muscle and suppresses fat accumulation in high-fat diet-induced obesity in rats.
    Author: Kusunoki M, Tsutsumi K, Iwata K, Yin W, Nakamura T, Ogawa H, Nomura T, Mizutani K, Futenma A, Utsumi K, Miyata T.
    Journal: Metabolism; 2005 Dec; 54(12):1587-92. PubMed ID: 16311090.
    Abstract:
    Although the lipoprotein lipase (LPL) activator NO-1886 shows antiobesity effects in high-fat-induced obese animals, the mechanism remains unclear. To clarify the mechanism, we studied the effects of NO-1886 on the expression of uncoupling protein (UCP) 1, UCP2, and UCP3 in rats. NO-1886 was mixed with a high-fat chow to supply a dose of 100 mg/kg to 8-month-old male Sprague-Dawley rats. The animals were fed the high-fat chow for 8 weeks. At the end of the administration period, brown adipose tissue (BAT), mesenteric fat, and soleus muscle were collected and levels of UCP1, UCP2, and UCP3 messenger RNA (mRNA) were determined. NO-1886 suppressed the body weight increase seen in the high-fat control group after the 8-week administration (585 +/- 39 vs 657 +/- 66 g, P < .05). NO-1886 also suppressed fat accumulation in visceral (46.9 +/- 10.4 vs 73.7 +/- 14.5 g, P < .01) and subcutaneous (43.1 +/- 18.1 vs 68.9 +/- 18.8 g, P < .05) tissues and increased the levels of plasma total cholesterol and high-density lipoprotein cholesterol in comparison to the high-fat control group. In contrast, NO-1886 decreased the levels of plasma triglycerides, nonesterified free fatty acid, glucose, and insulin. NO-1886 increased LPL activity in soleus muscle (0.082 +/- 0.013 vs 0.061 +/- 0.016 mumol of free fatty acid per minute per gram of tissue, P < .05). NO-1886 increased the expression of UCP3 mRNA in soleus muscle 3.14-fold (P < .01) compared with the high-fat control group without affecting the levels of UCP3 in mesenteric adipose tissue and BAT. In addition, NO-1886 did not affect the expression of UCP1 and UCP2 in BAT, mesenteric adipose tissue, and soleus muscle. In conclusion, NO-1886 increased the expression of UCP3 mRNA and LPL activity only in skeletal muscle. Therefore, a possible mechanism for NO-1886's antiobesity effects in rats may be the enhancement of LPL activity in skeletal muscle and the accompanying increase in UCP3 expression.
    [Abstract] [Full Text] [Related] [New Search]