These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two-dimensional gel electrophoresis maps of the proteome and phosphoproteome of primitively cultured rat mesangial cells.
    Author: Jiang XS, Tang LY, Cao XJ, Zhou H, Xia QC, Wu JR, Zeng R.
    Journal: Electrophoresis; 2005 Dec; 26(23):4540-62. PubMed ID: 16315178.
    Abstract:
    Mesangial cells (MC) play an important role in maintaining the structure and function of the glomerulus. The proliferation of MC is a prominent feature of many kinds of glomerular disease. The first reference 2-DE maps of rat mesangial cells (RMC), stained with silver staining or Pro-Q Diamond dye, have been established here to describe the proteome and phosphoproteome of RMC, respectively. A total of 157 selected protein spots, corresponding to 118 unique proteins, have been identified by MALDI-TOF-MS or LC-ESI-IT-MS/MS, in which 37 protein spots representing 28 unique proteins have also been stained with Pro-Q Diamond, indicating that they are in phosphorylated forms. All the identified proteins were bioinformatically annotated in detail according to their physiochemical characteristics, subcellular location, and function. Most of the separated or identified protein spots are distributed in the area of mass 10-70 kDa and pI 5.0-8.0. The identified proteins include mainly cytoplasmic and nuclear proteins and some mitochondrial, endoplasmic reticulum, and membrane proteins. These proteins are classified into different functional groups such as structure and mobility proteins (21.2%), metabolic enzymes (16.9%), protein folding and metabolism proteins (13.6%), signaling proteins (14.4%), heat-shock proteins (7.6%), and other functional proteins (12.7%). While structure and mobility proteins are mostly represented by protein spots with high abundance, signaling proteins are mostly represented by protein spots with relatively low abundance. Such a 2-DE database for RMC, especially with many signaling proteins and phosphoproteins characterized, will provide a valuable resource for comparative proteomics analysis of normal and pathologic conditions affecting MC function or pathologic progress.
    [Abstract] [Full Text] [Related] [New Search]