These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sustained E2 antibody response correlates with reduced peak viremia after hepatitis C virus infection in the chimpanzee.
    Author: Youn JW, Park SH, Lavillette D, Cosset FL, Yang SH, Lee CG, Jin HT, Kim CM, Shata MT, Lee DH, Pfahler W, Prince AM, Sung YC.
    Journal: Hepatology; 2005 Dec; 42(6):1429-36. PubMed ID: 16317673.
    Abstract:
    Immune correlates of protection against hepatitis C virus (HCV) infection are not well understood. Here we investigated 2 naive and 6 immunized chimpanzees before and after intravenous challenge, 12 weeks after the last immunization, with 100 50% chimpanzee infectious doses (CID(50)) of heterologous genotype 1b HCV. Vaccination with recombinant DNA and adenovirus vaccines expressing HCV core, E1E2, and NS3-5 genes induced long-term HCV-specific antibody and T-cell responses and reduced peak viral load about 100 times compared with controls (5.91 +/- 0.38 vs. 3.81 +/- 0.71 logs, respectively). There was a statistically significant inverse correlation between peak viral loads and envelope glycoprotein 2 (E2)-specific antibody responses at the time of challenge. Interestingly, one vaccinee that had sterilizing immunity against slightly heterologous virus generated the highest level of E2-specific total and neutralizing antibody responses as well as strong NS3/NS5-specific T-cell proliferative responses. The other four vaccinees with low levels of E2-specific antibody had about 44-fold reduced peak viral loads but eventually developed persistent infections. In conclusion, vaccine-induced E2-specific antibody plays an important role in prevention from nonhomologous virus infection and may provide new insight into the development of an effective HCV vaccine.
    [Abstract] [Full Text] [Related] [New Search]