These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Canal and otolith contributions to visual orientation constancy during sinusoidal roll rotation. Author: Kaptein RG, Van Gisbergen JA. Journal: J Neurophysiol; 2006 Mar; 95(3):1936-48. PubMed ID: 16319209. Abstract: Using vestibular sensors to maintain visual stability during changes in head tilt, crucial when panoramic cues are not available, presents a computational challenge. Reliance on the otoliths requires a neural strategy for resolving their tilt/translation ambiguity, such as canal-otolith interaction or frequency segregation. The canal signal is subject to bandwidth limitations. In this study, we assessed the relative contribution of canal and otolith signals and investigated how they might be processed and combined. The experimental approach was to explore conditions with and without otolith contributions in a frequency range with various degrees of canal activation. We tested the perceptual stability of visual line orientation in six human subjects during passive sinusoidal roll tilt in the dark at frequencies from 0.05 to 0.4 Hz (30 degrees peak to peak). Because subjects were constantly monitoring spatial motion of a visual line in the frontal plane, the paradigm required moment-to-moment updating for ongoing ego motion. Their task was to judge the total spatial sway of the line when it rotated sinusoidally at various amplitudes. From the responses we determined how the line had to be rotated to be perceived as stable in space. Tests were taken both with (subject upright) and without (subject supine) gravity cues. Analysis of these data showed that the compensation for body rotation in the computation of line orientation in space, although always incomplete, depended on vestibular rotation frequency and on the availability of gravity cues. In the supine condition, the compensation for ego motion showed a steep increase with frequency, compatible with an integrated canal signal. The improvement of performance in the upright condition, afforded by graviceptive cues from the otoliths, showed low-pass characteristics. Simulations showed that a linear combination of an integrated canal signal and a gravity-based signal can account for these results.[Abstract] [Full Text] [Related] [New Search]