These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pancreatic microcirculation in the common tree shrew (Tupaia glis) as revealed by scanning electron microscopy of vascular corrosion casts. Author: Bamroongwong S, Chunhabundit P, Rattanchaikunsopon P, Somana R. Journal: Acta Anat (Basel); 1992; 143(3):188-94. PubMed ID: 1632182. Abstract: Pancreatic vascular casts of the common tree shrew (Tupaia glis) were prepared by infusion of Batson's No. 17 plastic mixture into the blood vessels and examined by scanning electron microscopy (SEM). Routine histological study of the pancreas was also performed. It was found that the A and D cells appeared to occupy the core whereas the B cells were found at the periphery of the islets of Langerhans. With SEM, the insular arteriole, a branch of the interlobular artery, was shown to penetrate deeply into the core of the islets before branching off into the glomerular capillary network supplying the islets. These capillaries reunited at the periphery of the islets to become vasa efferentia and then gave off capillaries to anastomose with those in the exocrine part of the pancreas, the insuloacinar portal system. Such an insuloacinar portal system found in the pancreas of the tree shrew was similar to that found in the horse and monkey. However, there were some intralobular arterioles which did not end in the islets but directly branched into the interacinar capillary network and periductular plexus. The capillaries in the exocrine part not only gathered into intralobular venules which confluently formed the interlobular vein but also supplied the duct system. The periductular plexus also collected blood into the intralobular venule and interlobular vein, respectively.[Abstract] [Full Text] [Related] [New Search]