These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Botulinum neurotoxin types A, B, and E: fragmentations by autoproteolysis and other mechanisms including by O-phenanthroline-dithiothreitol, and association of the dinucleotides NAD(+)/NADH with the heavy chain of the three neurotoxins. Author: Dasgupta BR, Antharavally BS, Tepp W, Evenson ML. Journal: Protein J; 2005 Aug; 24(6):337-68. PubMed ID: 16323041. Abstract: The first evidence of autoproteolytic activity of the approximately 50-kDa light chain of the clostridial neurotoxins (NT) is traceable to the observations that the light chains of botulinum NT serotypes A and E, separated from their approximately 100-kDa heavy chain conjugate, were found cleaved at the amino side of Tyr250 and Arg244, respectively [DasGupta and Foley (1989). Biochimie 71: 1183-1200]. Specific cleavages of the recombinant light chain of NT type A, including at Tyr249-Tyr250, firmly established that the cleavages reported earlier were due to autoproteolysis [Ahmed et al. (2001). J. Protein Chem. 20: 221-231; Ahmed et al. (2003). Biochemistry 42:12539-12549] and not by contaminating proteases or non-enzymatic. We now report many cleavages in the NT types A, B and E and also in their separated light and heavy chains, and identification of several of the peptide bonds cleaved. None of the identified cleaved bonds (-P1-P1' -) in one serotype (except Asp-Pro) was found common in other serotypes or cleaved within itself at a second site. After separation from the heavy chain self-cleavages of the light chains of type A, B and E at Tyr249-Tyr250, Gln258-Ser259 and Ile243-Arg244, respectively indicate an intriguing feature (in the aligned sequences these bonds of type A and B are 2 and type A and E are 4 peptide bonds apart) that may have some role in the NT's structure-function relationship yet to be understood. We point out that autoproteolysis of a single peptide bond (Phe418-Thr419 or Phe422-Glu423) in NT type A reported by Ahmed et al. (2001) can potentially generate proteolytically active light chain freed of the heavy chain; this is an efficient pathway, that by-passes nicking by a trypsin-like protease(s) inside the intrachain disulfide bridge and its reductive cleavage. We offer probable explanations for the observed cleavages such as acid- and metal-mediated (non-catalytic and non-stoichiometric) reactions in addition to autoproteolysis but cannot predict which mechanism(s) of cleavage occur or prevail following NT's entry in the body as poison or therapeutic agent. The metal chelator O-phenanthroline (above critical miceller concentration) in the presence of dithiothreitol cleaved type E NT at limited sites generating discrete 114-, 87-, 49-, 42-, and 31-kDa fragments but degraded NTs type A and B extensively. The limited cleavage of type E NT was dependent on the presence of metal ion(s) bound to the protein and its native (urea sensitive) conformation. The self-cleavage of the NTs at specific sites prompted us to search for specific binding sites on the NTs analogous to SNARE-motifs-the 9-residuelong motifs present on the NT's natural substrates (SNAP-25, syntaxin, VAMP/synaptobrevin); such putative binding motifs (sites) noted on all clostridial NTs are reported here. Their relationship to the observed autoproteolysis remains to be determined experimentally. The dinucleotide NAD(+)/NADH associated with the NTs type A, B and E (2-3 NADH per protein molecule) via their H-chains, and a portion of the H-chain (toward the C-terminus) appears to exhibit limited amino acid sequence homology with lactate dehydrogenase-a representative NAD(+)/NADH binding protein.[Abstract] [Full Text] [Related] [New Search]