These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chromosome painting between human and lorisiform prosimians: evidence for the HSA 7/16 synteny in the primate ancestral karyotype.
    Author: Nie W, O'Brien PC, Fu B, Wang J, Su W, Ferguson-Smith MA, Robinson TJ, Yang F.
    Journal: Am J Phys Anthropol; 2006 Feb; 129(2):250-9. PubMed ID: 16323198.
    Abstract:
    Multidirectional chromosome painting with probes derived from flow-sorted chromosomes of humans (Homo sapiens, HSA, 2n = 46) and galagos (Galago moholi, GMO, 2n = 38) allowed us to map evolutionarily conserved chromosomal segments among humans, galagos, and slow lorises (Nycticebus coucang, NCO, 2n = 50). In total, the 22 human autosomal painting probes detected 40 homologous chromosomal segments in the slow loris genome. The genome of the slow loris contains 16 sytenic associations of human homologues. The ancient syntenic associations of human chromosomes such as HSA 3/21, 7/16, 12/22 (twice), and 14/15, reported in most mammalian species, were also present in the slow loris genome. Six associations (HSA 1a/19a, 2a/12a, 6a/14b, 7a/12c, 9/15b, and 10a/19b) were shared by the slow loris and galago. Five associations (HSA 1b/6b, 4a/5a, 11b/15a, 12b/19b, and 15b/16b) were unique to the slow loris. In contrast, 30 homologous chromosome segments were identified in the slow loris genome when using galago chromosome painting probes. The data showed that the karyotypic differences between these two species were mainly due to Robertsonian translocations. Reverse painting, using galago painting probes onto human chromosomes, confirmed most of the chromosome homologies between humans and galagos established previously, and documented the HSA 7/16 association in galagos, which was not reported previously. The presence of the HSA 7/16 association in the slow loris and galago suggests that the 7/16 association is an ancestral synteny for primates. Based on our results and the published homology maps between humans and other primate species, we propose an ancestral karyotype (2n = 60) for lorisiform primates.
    [Abstract] [Full Text] [Related] [New Search]