These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of disulfide bond position in proteins and sequence analysis of cystine-bridged peptides by tandem mass spectrometry.
    Author: Bean MF, Carr SA.
    Journal: Anal Biochem; 1992 Mar; 201(2):216-26. PubMed ID: 1632509.
    Abstract:
    Tandem mass spectrometry employing high-energy, collisionally activated dissociation (CAD) is shown to be a useful method for sequencing through the cystine bridge of intermolecularly disulfide-bonded peptides. A characteristic triplet of intense fragment ions is observed corresponding to cleavage through and to either side of the disulfide bridge. These fragments define the masses of the linked peptides. Fragments due to peptide chain cleavage are also observed at lower abundance in the product-ion spectra and can be sufficient to sequence both of the disulfide-linked peptides without any prior knowledge of the peptide or protein sequence. Even in cases where the peptide sequence-related product-ion yields are poor, the intensities of the disulfide cleavage ions are usually sufficient to determine the molecular weights of the component cystine-bridged peptides. In this paper we demonstrate that the high-energy CAD tandem MS approach may be used to characterize disulfide-bonded peptides directly in complex enzymatic or chemical digests of native proteins. This obviates the need for individual purification of intermolecularly disulfide-linked peptides prior to analysis. The techniques are illustrated here for synthetic, inter- and intramolecularly disulfide-linked peptides and for human transforming growth factor-alpha (des-Val-Val-TGF-alpha), a compact protein containing 48 residues and three disulfides.
    [Abstract] [Full Text] [Related] [New Search]