These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Suppression of inducible nitric oxide synthase and cyclooxygenase-2 expression in RAW 264.7 macrophages by sesquiterpene lactones. Author: Shin SG, Kang JK, Lee KR, Lee HW, Han JW, Choi WS. Journal: J Toxicol Environ Health A; 2005 Dec 10; 68(23-24):2119-31. PubMed ID: 16326428. Abstract: The molecular mechanism underlying the suppression of lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma)-induced nitric oxide (NO) and prostaglandin (PG) E(2) production was investigated in RAW 264.7 macrophages treated with sesquiterpene lactones, zaluzanin-C and estafiatone, isolated from Ainsliaea. Zaluzanin-C and estafiatone decreased NO production in LPS/IFN-gamma-stimulated RAW 264.7 macrophages with an IC50 of about 6.61 microM and 3.80 microM, respectively. In addition, these compounds inhibited the synthesis of PGE(2) in LPS/IFN-gamma-treated RAW 264.7 macrophages. Furthermore, treatment with zaluzanin-C and estafiatone resulted in a decrease in inducible No Synthase (iNOS) and Cyclooxygenase-2 (COX-2) protein and mRNA expression levels. Zaluzanin-C and estafiatone inhibited nuclear factor-kappaB (NF-kappaB) activation, a transcription factor necessary for iNOS and COX-2 expression in response to LPS/IFN-gamma. This effect was accompanied by parallel reduction of phosphorylation and degradation of inhibitor of kappaB (IkB). In addition, these effects were completely blocked by treatment with cysteine, indicating that the inhibitory effect of zaluzanin-C and estafiatone might be mediated by alkylation of either NF-kappaB itself or an upstream molecule of NF-kappaB. These results demonstrate that the suppression of NF-kappaB activation by zaluzanin-C and estafiatone might be attributed to inhibition of nuclear translocation of NF-kappaB resulting from blockade of the degradation of IkappaB, leading to suppression of the expression of iNOS and COX-2, which play important roles in inflammatory signaling pathways.[Abstract] [Full Text] [Related] [New Search]