These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Maximal lactate steady state concentration independent of pedal cadence in active individuals.
    Author: Denadai BS, Ruas VD, Figueira TR.
    Journal: Eur J Appl Physiol; 2006 Mar; 96(4):477-80. PubMed ID: 16328190.
    Abstract:
    The maximal lactate steady state (MLSS) is defined as the highest blood lactate concentration that can be maintained over time without a continual blood lactate accumulation. The objective of the present study was to analyze the effects of pedal cadence (50 vs. 100 rev min(-1)) on MLSS and the exercise workload at MLSS (MLSS(workload)) during cycling. Nine recreationally active males (20.9+/-2.9 years, 73.9+/-6.5 kg, 1.79+/-0.09 m) performed an incremental maximal load test (50 and 100 rev min(-1)) to determine anaerobic threshold (AT) and peak workload (PW), and between two and four constant submaximal load tests (50 and 100 rev min(-1)) on a mechanically braked cycle ergometer to determine MLSS(workload) and MLSS. MLSS(workload) was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. The maximal lactate steady state intensity (MLSS(intensity)) was defined as the ratio between MLSS(workload) and PW. MLSS(workload) (186.1+/-21.2 W vs. 148.2+/-15.5 W) and MLSS(intensity) (70.5+/-5.7% vs. 61.4+/-5.1%) were significantly higher during cycling at 50 rev min(-1) than at 100 rev min(-1), respectively. However, there was no significant difference in MLSS between 50 rev min(-1) (4.8+/-1.6 mM) and 100 rev min(-1) (4.7+/-0.8 mM). We conclude that MLSS(workload) and MLSS(intensity) are dependent on pedal cadence (50 vs. 100 rev min(-1)) in recreationally active individuals. However, this study showed that MLSS is not influenced by the different pedal cadences analyzed.
    [Abstract] [Full Text] [Related] [New Search]