These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of selective pressure block of Y-type optic nerve fibers on the receptive-field properties of neurons in area 18 of the visual cortex of the cat. Author: Dreher B, Michalski A, Cleland BG, Burke W. Journal: Vis Neurosci; 1992 Jul; 9(1):65-78. PubMed ID: 1633128. Abstract: Recordings were made from single neurons in area 18 of anesthetized cats (N2O/O2 mixture supplemented by continuous intravenous infusion of barbiturate) in which one optic nerve had been pressure blocked to selectively block conduction in the largest (Y-type) fibers. Cortical neurons were stimulated visually via the normal eye or via the eye with the pressure-blocked optic nerve ("Y-blocked eye"). Several properties of the receptive fields such as their spatial organization (S or C cells), orientation tuning, and the presence and strength of end-zone inhibition appear to be unaffected by removal of the Y input. By contrast, the removal of the Y input resulted in a small but significant reduction in the size of the discharge field and in the direction-selectivity index. In three respects, peak response discharge rate, eye dominance, and velocity sensitivity, removal of the Y input had strong and highly significant effects. Thus, the mean peak discharge frequency of responses evoked by the stimulation of binocular neurons via the Y-blocked eye was significantly lower than that of responses evoked by the stimulation via the normal eye. Accordingly, the eye-dominance histogram was shifted markedly towards the normal eye (more so than in the homologous experiment conducted on area 17-Burke et al., 1992). Finally, the mean preferred velocity of responses of cells activated via the normal eye was in the vicinity of 145 deg/s, whereas for cells activated via the Y-blocked eye the value was about 35 deg/s. Overall, the results of the present study imply that (1) apart from Y-type excitatory input there are significant excitatory non-Y-inputs to area 18; these inputs at least partially consist of indirect X-type input relayed via area 17; (2) in neurons of area 18 that receive both Y-type and non-Y-type excitatory inputs, the Y-type input has a major influence on strength of the response and velocity sensitivity and a lesser influence on the direction selectivity and size of the discharge fields; and (3) area 18 contains mechanisms determining such receptive-field properties as S- or C-type organization, orientation tuning, and direction selectivity which can be accessed either by the Y input or by non-Y input.[Abstract] [Full Text] [Related] [New Search]