These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intramolecular hydrogen bonding in disubstituted ethanes. A comparison of NH...O- and OH...O- Hydrogen bonding through conformational analysis of 4-amino-4-oxobutanoate (succinamate) and monohydrogen 1,4-butanoate (monohydrogen succinate) anions. Author: Rudner MS, Jeremic S, Petterson KA, Kent DR, Brown KA, Drake MD, Goddard WA, Roberts JD. Journal: J Phys Chem A; 2005 Oct 13; 109(40):9076-82. PubMed ID: 16332014. Abstract: Relative strengths of amide NH...O- and carboxyl OH...O- hydrogen bonds were investigated via conformational analysis of succinamate and monohydrogen succinate anions with the aid of vicinal proton-proton NMR couplings and B3LYP DFT quantum mechanical calculations for a variety of solvents. New experimental results for succinamate are compared with those obtained from previous studies of monohydrogen succinate. While some computational results for monohydrogen succinate were published previously, the results contained herein are the product of a more powerful methodology than that used earlier. The experimental results clearly show that intramolecular hydrogen-bond formation is more favored in aprotic solvents than in protic solvents for both molecules. Furthermore, the preference of the succinate monoanion for the gauche conformation is much stronger in aprotic solvents than that of succinamate, indicating that the OH...O- hydrogen bond is substantially stronger than its NH...O- counterpart, despite the approximately 5 kcal cost for formation of the E configuration of the carboxyl group needed to make an intramolecular hydrogen bond. The actual energy differences between formation of internal hydrogen bonds for monohydrogen succinate and succinamate anion were estimated by comparison of the relative values of K1 of the respective acids in water and DMSO by a procedure first developed by Westheimer. Recent theoretical work with succinamate highlights the necessity of considering substituent orientational degrees of freedom to understand the conformational equilibria of the central CH2-CH2 torsions in disubstituted ethanes. Similar methodology is applied here to succinic acid monoanion, by mapping potential-energy surfaces with respect to the CH2-CH2 torsional, carboxyl-substituent rotational, and carboxyl-proton E/Z isomeric degrees of freedom. Boltzmann populations were compared with gauche populations estimated from the experimentally determined coupling constants. The quantum mechanical results for succinamate show a much weaker tendency toward hydrogen bonding than for the succinic acid monoanion. However, the theoretical methods employed appear to substantially overestimate contributions from intramolecularly hydrogen-bonded structures for the succinic acid monoanion when compared with experimental results. Natural bond orbital analysis, applied to the quantum mechanical wave functions of fully optimized gauche and trans structures, showed a strong correlation between the population of amide sigma*(N-H) and carboxyl sigma*(O-H) antibonding orbitals and apparent hydrogen-bonding behavior.[Abstract] [Full Text] [Related] [New Search]