These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Myogenic regulation of arterial diameter: role of potassium channels with a focus on delayed rectifier potassium current. Author: Cole WC, Chen TT, Clément-Chomienne O. Journal: Can J Physiol Pharmacol; 2005; 83(8-9):755-65. PubMed ID: 16333377. Abstract: The phenomenon of myogenic constriction of arterial resistance vessels in response to increased intraluminal pressure has been known for over 100 years, yet our understanding of the molecular mechanisms involved remains incomplete. The focus of this paper concerns the potassium (K+) channels that provide a negative feedback control of the myogenic depolarization of vascular smooth muscle cells that is provoked by elevations in intraluminal pressure, and specifically, the contribution of delayed rectifier (KDR) channels. Our knowledge of the important role played by KDR channels, as well as their molecular identity and acute modulation via changes in gating, has increased dramatically in recent years. Several lines of evidence point to a crucial contribution by heteromultimeric KV1 subunit-containing KDR channels in the control of arterial diameter and myogenic reactivity, but other members of the KV superfamily are also expressed by vascular myocytes, and less is known concerning their specific functions. The effect of pharmacological modulation of KDR channels is discussed, with particular reference to the actions of anorexinogens on KV1- and KV2-containing KDR channels. Finally, the need for a greater understanding of the mechanisms that control KDR channel gene expression is stressed in light of evidence indicating that there is a reduced expression of KDR channels in diseases associated with abnormal myogenic reactivity and vascular remodelling.[Abstract] [Full Text] [Related] [New Search]