These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of GABAergic transmission by activity via postsynaptic Ca2+-dependent regulation of KCC2 function.
    Author: Fiumelli H, Cancedda L, Poo MM.
    Journal: Neuron; 2005 Dec 08; 48(5):773-86. PubMed ID: 16337915.
    Abstract:
    Activity-induced modification of GABAergic transmission contributes to the plasticity of neural circuits. In the present work we found that prolonged postsynaptic spiking of hippocampal neurons led to a shift in the reversal potential of GABA-induced Cl- currents (E(Cl)) toward positive levels in a duration- and frequency-dependent manner. This effect was abolished by blocking cytosolic Ca2+ elevation and mimicked by releasing Ca2+ from internal stores. Activity- and Ca2+-induced E(Cl) shifts were larger in mature neurons, which express the K-Cl cotransporter KCC2 at high levels, and inhibition of KCC2 occluded the shifts. Overexpression of KCC2 in young cultured neurons, which express lower levels of KCC2 and have a more positive E(Cl), resulted in hyperpolarized E(Cl) similar to that of mature cells. Importantly, these young KCC2-expressing neurons became responsive to neuronal spiking and Ca2+ elevation by showing positive E(Cl) shifts. Thus, repetitive postsynaptic spiking reduces the inhibitory action of GABA through a Ca2+-dependent downregulation of KCC2 function.
    [Abstract] [Full Text] [Related] [New Search]