These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A homogeneous FRET assay system for multiubiquitin chain assembly and disassembly.
    Author: Gururaja TL, Pray TR, Lowe R, Dong G, Huang J, Daniel-Issakani S, Payan DG.
    Journal: Methods Enzymol; 2005; 399():663-82. PubMed ID: 16338388.
    Abstract:
    Ubiquitin (Ub, 76aa) is a small highly conserved protein present universally in eukaryotic cells. Covalent attachment of (Ub)(n) to target proteins is a well-known posttranslational modification that has been implicated in a wide array of cellular processes including cell biogenesis. Ubiquitin polymerization by the Ub activation-conjugation-ligation cascade and the reverse disassembly process catalyzed by Ub isopeptidases largely regulate substrate protein targeting to the 26S proteasome. Ub chains of four or more subunits attached by K48 isopeptide linkages have been shown to be necessary for the 26S proteasome association and subsequent degradation of protein molecules. To better understand this protein degradation event, it is important to develop Ub polymerization and depolymerization assays that monitor every reaction step involved in Ub attachment to, or detachment from, substrate protein molecules. In this chapter, we describe homogeneous, easy-to-use, nonradioactive, complementary continuous fluorescence assays capable of monitoring the kinetics of Ub chain formation by E3 Ub ligases, and their hydrolysis by isopeptidases, which rely on mixing a 1:1 population of fluorophore-labeled Ub molecules containing a FRET pair. The proximity of fluorescein (donor) and tetramethylrhodamine (acceptor) in Ub polymers results in fluorescein quenching on ligase-induced Ub chain assembly. Conversely, a dramatic enhancement of fluorescein emission was observed on Ub chain disassembly because of isopeptidase activity. These assays thus provide a valuable tool for monitoring Ub ligase and isopeptidase activities using authentic Ub monomers and polymers as substrates. Screening of a large number of small molecule compound libraries in a high-throughput fashion is achievable, warranting further optimization of these assays.
    [Abstract] [Full Text] [Related] [New Search]