These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Morphine directly inhibits nociceptors in inflamed skin. Author: Wenk HN, Brederson JD, Honda CN. Journal: J Neurophysiol; 2006 Apr; 95(4):2083-97. PubMed ID: 16339007. Abstract: Peripherally delivered opiates attenuate mechanical and thermal hyperalgesia in experimental models of inflammation, suggesting that activation of peripheral opioid receptors decreases the excitability of nociceptors in inflamed tissues. The current study examines the effects of peripheral morphine sulfate on response properties of sensory neurons in healthy and inflamed skin. Afferent units (185) were isolated from tibial nerve of rats using an in vitro glabrous skin-nerve teased-fiber preparation. Of these, 107 units were from normal healthy skin, and 78 were from inflamed skin 18 h after intraplantar injection of complete Freund's adjuvant. As a population, C-fiber units innervating inflamed skin exhibited properties characteristic of sensitization when compared with units innervating healthy control skin. Mechanical thresholds were lowered, responses to noxious mechanical and thermal stimuli were elevated, a greater proportion of units was spontaneously active, and the average rate of spontaneous discharge was higher. Response properties in other conduction velocity groups remained unchanged. Fifty-eight percent of C and C/Adelta nociceptors innervating inflamed skin were opiate-sensitive, and their excitability was attenuated by direct application of morphine to their receptive fields. All morphine-sensitive units were nociceptors from inflamed skin with conduction velocities <1.3 m/s. Morphine effects were concentration-dependent and naloxone-sensitive, indicating that the effects were receptor-mediated. These findings provide direct evidence that morphine acts through peripheral opioid receptors to inhibit the activity of cutaneous nociceptors under conditions of inflammation.[Abstract] [Full Text] [Related] [New Search]