These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dominant role of sarcoendoplasmic reticulum Ca2+-ATPase pump in Ca2+ homeostasis and exocytosis in rat pancreatic beta-cells.
    Author: Hughes E, Lee AK, Tse A.
    Journal: Endocrinology; 2006 Mar; 147(3):1396-407. PubMed ID: 16339201.
    Abstract:
    The exocytosis of insulin-containing granules from pancreatic beta-cells is tightly regulated by changes in cytosolic Ca2+ concentration ([Ca2+]i). We investigated the role of the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) pump, Na+/Ca2+ exchanger, and plasma membrane Ca2+-ATPase pump in the Ca2+ dynamics of single rat pancreatic beta-cells. When the membrane potential was voltage clamped at -70 mV (in 3 mm glucose at approximately 22 or 35 C), SERCA pump inhibition dramatically slowed (approximately 4-fold) cytosolic Ca2+ clearance and caused a sustained rise in basal [Ca2+]i via the activation of capacitative Ca2+ entry. SERCA pump inhibition increased ( approximately 1.8-fold) the amplitude of the depolarization-triggered Ca2+ transient at approximately 22 C. Inhibition of the Na+/Ca2+ exchanger or plasma membrane Ca2+-ATPase pump had only minor effects on Ca2+ dynamics. Simultaneous measurement of [Ca2+]i and exocytosis (with capacitance measurement) revealed that SERCA pump inhibition increased the magnitude of depolarization-triggered exocytosis. This enhancement in exocytosis was not due to the slowing of the cytosolic Ca2+ clearance but was closely correlated to the increase in the peak of the depolarization-triggered Ca2+ transient. When compared at similar [Ca2+]i with controls, the rise in basal [Ca2+]i during SERCA pump inhibition did not cause any enhancement in the magnitude of the ensuing depolarization-triggered exocytosis. Therefore, we conclude that in rat pancreatic beta-cells, the rapid uptake of Ca2+ by SERCA pump limits the peak amplitude of depolarization-triggered [Ca2+]i rise and thus controls the amount of insulin secretion.
    [Abstract] [Full Text] [Related] [New Search]