These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Steroid receptor coactivator-1-deficient mice exhibit altered hypothalamic-pituitary-adrenal axis function. Author: Winnay JN, Xu J, O'Malley BW, Hammer GD. Journal: Endocrinology; 2006 Mar; 147(3):1322-32. PubMed ID: 16339206. Abstract: Steroidogenic factor-1 (SF-1), has emerged as a critical nuclear receptor regulating development and differentiation at several levels of the hypothalamic-pituitary-steroidogenic axis. Although many coregulatory factors have been shown to physically and functionally interact with SF-1, the relative importance of these interactions in SF-1 target tissues has not been thoroughly established. In this study we assessed roles of steroid receptor coactivator-1 (SRC-1) in hypothalamic-pituitary-adrenal (HPA) axis function using SRC-1-deficient (SRC-1-/-) mice in the absence or presence of SF-1 haploinsufficiency. Surprisingly, SRC-1 deficiency did not alter baseline HPA axis function or the acute rise in corticosterone after ACTH administration and failed to exacerbate adrenocortical dysfunction in SF-1+/- mice. However, after exposure to paradigms of acute and chronic stress, SRC-1-/- mice exhibited an elevation in serum corticosterone despite normal (nonsuppressed) ACTH, suggesting an increase in adrenal sensitivity as well as a concomitant defect in glucocorticoid-mediated feedback inhibition of the HPA axis. An examination of potential compensatory mechanism(s) revealed an increase in adrenal weight, selective elevation of melanocortin 2 receptor mRNA, and a coincident increase in SRC-2 and SRC-3 expression in SRC-1-/- adrenals. A reduction in blood glucose was observed in SRC-1-/- mice after chronic stress, consistent with a generalized state of glucocorticoid resistance. Dexamethasone suppression tests confirmed a weakened ability of glucocorticoids to 1) elevate serum glucose levels and induce hepatic phosphoenolpyruvate carboxykinase transcription and 2) suppress pituitary proopiomelanocortin transcript levels in SRC-1-/- animals. Collectively, these data are consistent with an indispensable role for SRC-1 in mediating actions of glucocorticoids in pituitary and liver.[Abstract] [Full Text] [Related] [New Search]