These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function.
    Author: Condon JC, Hardy DB, Kovaric K, Mendelson CR.
    Journal: Mol Endocrinol; 2006 Apr; 20(4):764-75. PubMed ID: 16339279.
    Abstract:
    Progesterone acting via the progesterone receptor (PR) plays a critical role in maintaining uterine quiescence during pregnancy. In the present study, we tested the hypothesis that the transactivating capability of the PR is down-regulated in the myometrium at term by a change in uterine PR isoform ratio resulting from local activation of the nuclear factor (NF)-kappaB pathway. Overexpression of the truncated PR-C isoform in human myometrial cells inhibited PR-B transactivation. Expression of PR isoforms, PR-A, PR-B, and PR-C, was characterized by immunoblotting and quantitative PCR (Q-PCR) in fundal and lower uterine segment myometrium from pregnant women in labor and not in labor and in the pregnant mouse uterus during late gestation. We observed a marked increase in levels of PR-C and transcriptionally active PR-B specifically in fundal myometrium of women in labor. In pregnant mouse uterus, levels of PR-B and PR-C also increased between 15 days post coitum and term, whereas expression of PR-A was dramatically up-regulated at 19 days post coitum. In studies of uterine tissues of mice injected intraamniotically with surfactant protein A and of human myometrial and T47D breast cancer cells in culture, up-regulation of PR isoform expression was observed in response to activation of the NF-kappaB pathway. Chromatin immunoprecipitation analysis revealed IL-1beta induced binding of NF-kappaB to the PR promoter. Collectively, these findings suggest that up-regulation of inhibitory PR isoform expression by NF-kappaB activation in both laboring human fundus and pregnant mouse uterus near term may inhibit PR transactivation and thereby lead to a loss of uterine quiescence and the onset of labor.
    [Abstract] [Full Text] [Related] [New Search]