These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Post-vagotomy mechanical characteristics and structure of the thoracic aortic wall. Author: Sokolis DP, Zarbis N, Dosios T, Papalouka V, Papadimitriou L, Boudoulas H, Karayannacos PE. Journal: Ann Biomed Eng; 2005 Nov; 33(11):1504-16. PubMed ID: 16341919. Abstract: This study assessed the long-term effect of vagotomy on the structure and passive mechanical characteristics of the thoracic aorta under a wide range of stresses in vitro. Eight healthy Landrace pigs underwent bilateral vagotomy distal to the origin of the recurrent laryngeal nerve, and 10 pigs were sham-operated. Three months post-surgery, the aorta was excised and specimens from the ascending aorta, arch, and descending thoracic aorta were subjected to histomorphometrical evaluation and uniaxial tensile-testing until failure. Elastic modulus-stress data were plotted and submitted to regression analysis. Structural remodeling after vagotomy was characterized as vascular growth in the ascending aorta and arch, and as thinning in the descending thoracic aorta. In the aortic segments of vagotomized animals, the area density of elastin and collagen was increased, but smooth muscle density was decreased. Similar differences in regression parameters and failure strength between groups were found in all aortic segments, indicating that the vessel wall was stiffer and stronger in vagotomized animals. In the clinical setting, disease states or drugs blocking the regulatory role of the vagi nerves on the aortic wall may have undesirable consequences on the mechanical performance of the thoracic aorta, and therefore on hemodynamic homeostasis.[Abstract] [Full Text] [Related] [New Search]