These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Refractive index of thin, aqueous films between hydrophobic surfaces studied using evanescent wave atomic force microscopy. Author: McKee CT, Ducker WA. Journal: Langmuir; 2005 Dec 20; 21(26):12153-9. PubMed ID: 16342987. Abstract: We have studied the refractive index of a thin aqueous film between microscopic hydrophobic surfaces using evanescent wave atomic force microscopy (EW-AFM). An evanescent wave, generated at a solid-liquid interface, is scattered by AFM tips or glass particles attached to AFM cantilevers. The scattering of this wave is used to determine the refractive index as a function of separation between these surfaces. Measurements were performed on surfaces that were rendered hydrophobic with octadecyltrichlorosilane, which produces solid-water contact angles in excess of 90 degrees. For AFM tips, the average refractive index in the thin film was always equal to that of water when the film was thicker than approximately 100 nm. At smaller separations, the refractive index was always greater than or equal to that of water. This is inconsistent with the formation of air or vapor films and consistent with a small amount of organic material between the surfaces. For colloidal spheres (R approximately 10 microm), we were not able to detect changes in the refractive index of the thin film between the sphere and plate.[Abstract] [Full Text] [Related] [New Search]