These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Aging-related changes of intracellular Ca2+ stores and contractile response of intestinal smooth muscle.
    Author: Lopes GS, Ferreira AT, Oshiro ME, Vladimirova I, Jurkiewicz NH, Jurkiewicz A, Smaili SS.
    Journal: Exp Gerontol; 2006 Jan; 41(1):55-62. PubMed ID: 16343836.
    Abstract:
    In this study, we investigated the effect of aging on intracellular Ca2+ stores, as sarcoendoplasmic reticulum (SR) and mitochondria, and the influence of these compartments on contraction of rat colon smooth muscle [Bitar, K.N., 2003. Aging and neural control of the GI tract V. Aging and gastrointestinal smooth muscle: from signal transduction to contractile proteins. Am. J. Physiol. Gastrointest. Liver. Physiol. 284(1), G1-G7; Marijic, J., Li, Q.X., Song, M., Nishimaru, K., Stefani, E., Toro, L., 2001. Decreased expression of voltage-and Ca2+-activated K+ channels in coronary smooth muscle during aging. Circ. Res. 88, 210-234; Rubio, C., Moreno, A., Briones, A. Ivorra, M.D., D'Ocon, P., Vila, E., 2002. Alterations by age of calcium handling in rat resistance arteries. J. Cardiovasc. Pharmacol. 40(6), 832-840]. Calcium stores and contraction were evaluated by simultaneous measurements of fluorescence and tension in smooth muscle strips loaded with fura-2. Results showed that activation of muscarinic receptors by methylcholine (MCh, 10 microM), induced a greater contraction in aged rats than in adult animals. The inhibition of Ca2+ ATPase by thapsigargin (TG, 1 microM) did not prevent the refilling of SR either in adult or aged rats. MCh, in the presence of TG, induced an increase in transient fluorescence, indicating a release of Ca2+ from TG-insensitive compartment. The mitochondrial uncoupler, FCCP (5 microM), caused a greater increase in intracellular Ca2+ and tension in aged rats, indicating that mitochondria may accumulate more Ca2+ during aging. The present results show that changes in intracellular Ca2+ stores, such as mitochondria and SR, affect contraction and may cause dysfunctions during aging that could culminate in severe alterations of Ca2+ homeostasis and cell damage.
    [Abstract] [Full Text] [Related] [New Search]