These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The evolutionary dynamics of alpha-satellite. Author: Rudd MK, Wray GA, Willard HF. Journal: Genome Res; 2006 Jan; 16(1):88-96. PubMed ID: 16344556. Abstract: Alpha-satellite is a family of tandemly repeated sequences found at all normal human centromeres. In addition to its significance for understanding centromere function, alpha-satellite is also a model for concerted evolution, as alpha-satellite repeats are more similar within a species than between species. There are two types of alpha-satellite in the human genome; while both are made up of approximately 171-bp monomers, they can be distinguished by whether monomers are arranged in extremely homogeneous higher-order, multimeric repeat units or exist as more divergent monomeric alpha-satellite that lacks any multimeric periodicity. In this study, as a model to examine the genomic and evolutionary relationships between these two types, we have focused on the chromosome 17 centromeric region that has reached both higher-order and monomeric alpha-satellite in the human genome assembly. Monomeric and higher-order alpha-satellites on chromosome 17 are phylogenetically distinct, consistent with a model in which higher-order evolved independently of monomeric alpha-satellite. Comparative analysis between human chromosome 17 and the orthologous chimpanzee chromosome indicates that monomeric alpha-satellite is evolving at approximately the same rate as the adjacent non-alpha-satellite DNA. However, higher-order alpha-satellite is less conserved, suggesting different evolutionary rates for the two types of alpha-satellite.[Abstract] [Full Text] [Related] [New Search]