These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Second OH overtone excitation and statistical dissociation dynamics of peroxynitrous acid. Author: Konen IM, Li EX, Stephenson TA, Lester MI. Journal: J Chem Phys; 2005 Nov 22; 123(20):204318. PubMed ID: 16351267. Abstract: The second OH overtone transition of the trans-perp conformer of peroxynitrous acid (tp-HOONO) is identified using infrared action spectroscopy. HOONO is produced by the recombination of photolytically generated OH and NO(2) radicals, and then cooled in a pulsed supersonic expansion. The second overtone transition is assigned to tp-HOONO based on its vibrational frequency (10 195.3 cm(-1)) and rotational band contour, which are in accord with theoretical predictions and previous observations of the first overtone transition. The transition dipole moment associated with the overtone transition is rotated considerably from the OH bond axis, as evident from its hybrid band composition, indicating substantial charge redistribution upon OH stretch excitation. The overtone band exhibits homogeneous line broadening that is attributed to intramolecular vibrational redistribution, arising from the coupling of the initially excited OH stretch to other modes that ultimately lead to dissociation. The quantum state distributions of the OH X (2)Pi (nu=0) products following first and second OH overtone excitation of tp-HOONO are found to be statistical by comparison with three commonly used statistical models. The product state distributions are principally determined by the tp-HOONO binding energy of 16.2(1) kcal mol(-1). Only a small fraction of the OH products are produced in nu=1 following the second overtone excitation, consistent with statistical predictions.[Abstract] [Full Text] [Related] [New Search]