These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Author: Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint JP, Labalette M. Journal: Mech Ageing Dev; 2006 Mar; 127(3):274-81. PubMed ID: 16352331. Abstract: Memory T cells can be classified as central memory (T(CM), CD45RA(neg)CCR7(+)), effector memory (T(EM), CD45RA(neg)CCR7(neg)), and terminally differentiated cells (T(TD), CD45RA(+)CCR7(neg)) with different homing and effector capacities. In 101 healthy subjects aged from 5 to 96 years, distinct dynamics were evidenced between circulating CD4(+) and CD8(+) T cell populations. Naive CD4(+) and CD8(+) T cells decreased linearly with age, CD8(+) twice more rapidly. Memory cells outnumbered naive cells on average at 37.4 in the CD4(+) and 29.5 years of age in the CD8(+) pool. CD4(+) T(CM) and T(EM) cells were positively correlated and increased linearly at a similar rate with age, while CD4(+) T(TD) remained rare. CD8(+) T(EM) and T(TD) accumulated linearly with age, while T(CM) increased only slightly, and each memory subset was negatively correlated to the two others. Almost all CD8(+) T(TD) and some CD8(+) T(EM) had lost CD28 expression. Despite different dynamics, each individual CD4(+) naive and memory subset was correlated to the synonymous CD8(+) subset. Half of the subjects aged 65 years or older were characterized by extremely reduced CD8(+) naive and increased CD8(+) T(TD) cell counts, which could indicate an acceleration of the decay of the immune system from this age onward.[Abstract] [Full Text] [Related] [New Search]