These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glabridin suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking sphingosine kinase pathway: implications of Akt, extracellular signal-regulated kinase, and nuclear factor-kappaB/Rel signaling pathways. Author: Kang JS, Yoon YD, Han MH, Han SB, Lee K, Lee KH, Park SK, Kim HM. Journal: Mol Pharmacol; 2006 Mar; 69(3):941-9. PubMed ID: 16354764. Abstract: (R)-4-(3,4-Dihydro-8,8-dimethyl)-2H,8H-benzo[1,2-b:3,4-b'] dipyran-3yl)-1,3-benzenediol (glabridin) is known to have anti-inflammatory, antimicrobial, and cardiovascular protective activities. In the present study, we report the inhibitory effect of glabridin on intercellular adhesion molecule-1 (ICAM-1) expression in tumor necrosis factor-alpha (TNF-alpha)-stimulated human umbilical vein endothelial cells (HUVECs). Glabridin inhibited THP-1 cell adhesion to HUVECs stimulated by TNF-alpha and cell surface expression of ICAM-1 in TNF-alpha-stimulated HUVECs. The mRNA expression of adhesion molecules, including ICAM-1, vascular cell adhesion molecule-1, and E-selectin, was also suppressed by glabridin. Further study demonstrated the inhibitory effect of glabridin on nuclear factor (NF)-kappaB/Rel DNA binding, inhibitory factor-kappaB alpha (IkappaB alpha), and IkappaB beta degradation, IkappaB kinase activation, and p65 nuclear translocation in TNF-alpha-stimulated HUVECs. Treatment of a variety of cell lines with glabridin revealed that inhibitory effect of glabridin on NF-kappaB/Rel activation is not cell type-specific, and both inducible and constitutive NF-kappaB/Rel activation was suppressed by glabridin treatment. Moreover, TNF-alpha-induced phosphorylation of Akt and extracellular signal-regulated kinase (ERK) was blocked by glabridin treatment in HUVECs. Glabridin also suppressed sphingosine-1-phosphate (S1P)-induced cell surface expression and mRNA expression of ICAM-1. Further study demonstrated that TNF-alpha-induced sphingosine kinase activity was inhibited by glabridin, and the inhibitory effect of glabridin on TNF-alpha-induced ICAM-1 expression was reversed by addition of exogenous S1P. Together, our results indicate that the inhibitory effect of glabridin on ICAM-1 expression might be mediated, at least in part, by inhibiting sphingosine kinase pathway and subsequent inhibition of signaling pathways, including Akt, ERK, and NF-kappaB/Rel signaling pathway.[Abstract] [Full Text] [Related] [New Search]