These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Improvement in the accuracy of multiple sequence alignment program MAFFT.
    Author: Katoh K, Kuma K, Miyata T, Toh H.
    Journal: Genome Inform; 2005; 16(1):22-33. PubMed ID: 16362903.
    Abstract:
    In 2002, we developed and released a rapid multiple sequence alignment program MAFFT that was designed to handle a huge (up to approximately 5,000 sequences) and long data (approximately 2,000 aa or approximately 5,000 nt) in a reasonable time on a standard desktop PC. As for the accuracy, however, the previous versions (v.4 and lower) of MAFFT were outperformed by ProbCons and TCoffee v.2, both of which were released in 2004, in several benchmark tests. Here we report a recent extension of MAFFT that aims to improve the accuracy with as little cost of calculation time as possible. The extended version of MAFFT (v.5) has new iterative refinement options, G-INS-i and L-INS-i (collectively denoted as [GL]-INS-i in this report). These options use a new objective function combining the weighted sum-of-pairs (WSP) score and a score similar to COFFEE derived from all pairwise alignments. We discuss the improvement in accuracy brought by this extension, mainly using two benchmark tests released very recently, BAliBASE v.3 (for protein alignments) and BRAliBASE (for RNA alignments). According to BAliBASE v.3, the overall average accuracy of L-INS-i was higher than those of other methods successively released in 2004, although the difference among the most accurate methods (ProbCons, TCoffee v.2 and new options of MAFFT) was small. The advantage in accuracy of [GL]-INS-i became greater for the alignments consisting of approximately 50-100 sequences. By utilizing this feature of MAFFT, we also examined another possible approach to improve the accuracy by incorporating homolog information collected from database. The [GL]-INS-i options are applicable to aligning up to approximately 200 sequences, although not applicable to thousands of sequences because of time and space complexities.
    [Abstract] [Full Text] [Related] [New Search]