These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pressure enhanced conductivity in bis-1,2,3-thiaselenazolyl dimers.
    Author: Beer L, Brusso JL, Haddon RC, Itkis ME, Kleinke H, Leitch AA, Oakley RT, Reed RW, Richardson JF, Secco RA, Yu X.
    Journal: J Am Chem Soc; 2005 Dec 28; 127(51):18159-70. PubMed ID: 16366569.
    Abstract:
    A synthetic sequence to salts of N-alkylated pyridine-bridged 1,2,3-thiaselenazolo-1,2,3-thiaselenazolylium cations [2]+ (R1 = Me, Et; R2 = H) is described. The corresponding radicals 2 (R1 = Me, Et; R2 = H) can be generated from the cations by chemical or electrochemical reduction. Crystals of the two radicals are isostructural and consist of interpenetrating pi-stacked arrays of closed-shell Se-Se sigma-bonded dimers [2]2 laced together with numerous short intermolecular Se- - -Se, Se- - -S, and Se- - -N contacts. Variable-temperature magnetic, conductivity, and near-infrared optical measurements indicate that the bulk materials behave as small band gap semiconductors with room-temperature conductivities sigma(RT) near 10(-6) S cm(-1) and thermal activation energies Ea of 0.32 eV (R1 = Me) and 0.36 eV (R1 = Et). LMTO band structure calculations on both compounds are consistent with this interpretation. The application of external pressure leads to dramatic increases in conductivity; at 4 GPa sigma(RT) reaches a value near 10(-1) S cm(-1) for R1 = Me and 10(-2) S/cm for R1 = Et. The conductivity remains activated for both compounds, but for R1 = Me the activation energy Ea is reduced to near 0.03 eV at 5 GPa, suggestive of a weakly metallic state.
    [Abstract] [Full Text] [Related] [New Search]