These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fatty acid composition of traditional and novel forages. Author: Clapham WM, Foster JG, Neel JP, Fedders JM. Journal: J Agric Food Chem; 2005 Dec 28; 53(26):10068-73. PubMed ID: 16366696. Abstract: Managing the fatty acid composition of grazing ruminant diets could lead to meat and milk products that have higher conjugated linoleic acid (CLA) concentrations, but forage fatty acid dynamics must be more fully understood for a range of forages before grazing systems can be specified. The fatty acid profiles of 13 different forages, including grasses, legumes, and forbs, grown under greenhouse conditions, were determined. Three separate harvests, at 3-week intervals, were made of each plant material. alpha-Linolenic [C18:3, 7.0-38.4 mg g(-1) of dry matter (DM)], linoleic (C18:2, 2.0-10.3 mg g(-1) of DM), and palmitic (C16:0, 2.6-7.5 mg g(-1) of DM) acids were the most abundant fatty acids in all species at each harvest, together representing approximately 93% of the fatty acids present. Concentrations of fatty acids declined as plants developed, but the fractional contribution of each fatty acid to total fatty acids remained relatively stable over time. Grasses had a uniform composition across species with a mean of 66% of total fatty acids provided by C18:3, 13% by C18:2, and 14% by C16:0. The fractional contribution of C18:3 to total fatty acids was lower and more variable in forbs than in grasses. Intake of fatty acid by grazing ruminants would be affected by the forage species consumed.[Abstract] [Full Text] [Related] [New Search]