These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China. Author: Ma G, Jin Y, Piao J, Kok F, Guusje B, Jacobsen E. Journal: J Agric Food Chem; 2005 Dec 28; 53(26):10285-90. PubMed ID: 16366728. Abstract: A total of 60 food samples commonly consumed in China were analyzed for phytate using the anion-exchange method and for calcium, iron, and zinc using atomic absorption spectrophotometry. The foods analyzed included those based on cereal grains and soybean. Phytate contents expressed on a wet weight basis ranged from 0 for foods made from starches to 1878 mg/100 g for dried stick-shaped soybean milk film. The calcium contents were between 2.08 mg/100 g for ground corn and 760.67 mg/100 g for diced fried soybean curd. The lowest values of iron and zinc were 0.04 mg/100 g for Panjin pearl rice cooked with discarding extra water and 0.08 mg/100 g for potato and bean starches, while the highest values of iron and zinc were observed in dried stick-shaped soybean milk film. Although many foods were relatively rich in calcium, zinc, and iron, many also contained a higher level of phytate. Of the 60 food samples, 34 foods had a phytate/calcium molar ratio >0.24, 53 foods had a phytate/iron molar ratio >1, 31 foods had a phytate/zinc molar ratio >15, and only 7 foods had a phytate x calcium/zinc >200. Phytate in foods impair the bioavailability of calcium, iron, and zinc, which to some extent depends upon food processing and cooking methods.[Abstract] [Full Text] [Related] [New Search]