These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-performance wavelet compression for mammography: localization response operating characteristic evaluation.
    Author: Kallergi M, Lucier BJ, Berman CG, Hersh MR, Kim JJ, Szabunio MS, Clark RA.
    Journal: Radiology; 2006 Jan; 238(1):62-73. PubMed ID: 16373759.
    Abstract:
    PURPOSE: To evaluate the accuracy of a visually lossless, image-adaptive, wavelet-based compression method for achievement of high compression rates at mammography. MATERIALS AND METHODS: The study was approved by the institutional review board of the University of South Florida as a research study with existing medical records and was exempt from individual patient consent requirements. Patient identifiers were obliterated from all images. The study was HIPAA compliant. An algorithm based on scale-specific quantization of biorthogonal wavelet coefficients was developed for the compression of digitized mammograms with high spatial and dynamic resolution. The method was applied to 500 normal and abnormal mammograms from 278 patients who were 32-85 years old, 85 of whom had biopsy-proved cancer. Film images were digitized with a charge-coupled device-based digitizer. The original and compressed reconstructed images were evaluated in a localization response operating characteristic experiment involving three radiologists with 2-10 years of experience in reading mammograms. RESULTS: Compression rates in the range of 14:1 to 2051:1 were achieved, and the rates were dependent on the degree of parenchymal density and the type of breast structure. Ranges of the area under the receiver operating characteristic curve were 0.70-0.83 and 0.72-0.86 for original and compressed reconstructed mammograms, respectively. Ranges of the area under the localization response operating characteristic curve were 0.39-0.65 and 0.43-0.71 for original and compressed reconstructed mammograms, respectively. The localization accuracy increased an average of 6% (0.04 of 0.67) with the compressed mammograms. Localization performance differences were statistically significant with P = .05 and favored interpretation with the wavelet-compressed reconstructed images. CONCLUSION: The tested wavelet-based compression method proved to be an accurate approach for digitized mammography and yielded visually lossless high-rate compression and improved tumor localization.
    [Abstract] [Full Text] [Related] [New Search]