These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nonequilibrium potential function of chemically driven single macromolecules via Jarzynski-type Log-Mean-Exponential Heat.
    Author: Qian H.
    Journal: J Phys Chem B; 2005 Dec 15; 109(49):23624-8. PubMed ID: 16375340.
    Abstract:
    Applying the method from recently developed fluctuation theorems to the stochastic dynamics of single macromolecules in ambient fluid at constant temperature, we establish two Jarzynski-type equalities: (1) between the log-mean-exponential (LME) of the irreversible heat dissiption of a driven molecule in nonequilibrium steady-state (NESS) and ln P(ness)(x) and (2) between the LME of the work done by the internal force of the molecule and nonequilibrium chemical potential function mu(ness)(x) identical with U(x) + k(B)T ln P(ness)(x), where P(ness)(x) is the NESS probability density in the phase space of the macromolecule and U(x) is its internal potential function. Psi = integral mu(ness)(x) P(ness)(x) dx is shown to be a nonequilibrium generalization of the Helmholtz free energy and DeltaPsi = DeltaU - TDeltaS for nonequilibrium processes, where S = - kB integralP(x) ln P(x) dx is the Gibbs entropy associated with P(x). LME of heat dissipation generalizes the concept of entropy, and the equalities define thermodynamic potential functions for open systems far from equilibrium.
    [Abstract] [Full Text] [Related] [New Search]