These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel method for automated EMG decomposition and MUAP classification.
    Author: Katsis CD, Goletsis Y, Likas A, Fotiadis DI, Sarmas I.
    Journal: Artif Intell Med; 2006 May; 37(1):55-64. PubMed ID: 16377160.
    Abstract:
    OBJECTIVE: This paper proposes a novel method for the extraction and classification of individual motor unit action potentials (MUAPs) from intramuscular electromyographic signals. METHODOLOGY: The proposed method automatically detects the number of template MUAP clusters and classifies them into normal, neuropathic or myopathic. It consists of three steps: (i) preprocessing of electromyogram (EMG) recordings, (ii) MUAP detection and clustering and (iii) MUAP classification. RESULTS: The approach has been validated using a dataset of EMG recordings and an annotated collection of MUAPs. The correct identification rate for MUAP clustering is 93, 95 and 92% for normal, myopathic and neuropathic, respectively. Ninety-one percent of the superimposed MUAPs were correctly identified. The obtained accuracy for MUAP classification is about 86%. CONCLUSION: The proposed method, apart from efficient EMG decomposition addresses automatic MUAP classification to neuropathic, myopathic or normal classes directly from raw EMG signals.
    [Abstract] [Full Text] [Related] [New Search]