These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Determination of endogenous glycosaminoglycans derived disaccharides in human plasma by HPLC: validation and application in a clinical study.
    Author: Upreti VV, Khurana M, Cox DS, Eddington ND.
    Journal: J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Feb 02; 831(1-2):156-62. PubMed ID: 16378767.
    Abstract:
    SB-424323 is a new, orally active anti-thrombotic agent presently in phase-II clinical development, with limited hemorrhagic risk and a unique mechanism of action involving the induction of glycosaminoglycans (GAGs) biosynthesis. The objective of the present study was to develop a simple and rapid high performance liquid chromatography (HPLC) method for determination of endogenous GAGs derived disaccharides in plasma samples from a phase-II clinical study of SB-424323. Sample preparation was a simple heat treatment of the diluted plasma followed by digestion of endogenous GAGs with chondroitinase ABC to yield unsaturated disaccharides, 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-galactose (DeltaDi-0S), 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose (DeltaDi-4S), and 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-6-O-sulfo-D-galactose (DeltaDi-6S). These disaccharides were recovered and purified using centrifugal filtration through a filter with 3000 molecular weight cut-off along with externally added internal standard 2-acetamido-2-deoxy-3-O-(2-O-sulfo-beta-D-gluco-4-enepyranosyluronic acid)-D-galactose (DeltaDi-UA2S). A gradient reverse phase HPLC separation was developed on a Waters Symmetry C(18) column (4.6 mm x 150 mm, 5 microm) with a gradient mobile phase system consisting of 0.8 mM tetrabutylammonium hydrogen sulfate and 2mM sodium chloride and acetonitrile at a flow rate of 1.0 mL/min. The eluate was monitored with an ultraviolet detector set at 230 nm. Plasma standard curves were linear (r(2)> or =0.994) in the concentration range 1.0-20 microg/mL with a lower limit of quantification (LLOQ) of 1.0 microg/mL for each of the disaccharide. The mean measured quality control (QC) concentrations for the disaccharides deviated from the nominal concentrations in the range of -8.92 to 5.61% and -16.3 to 16.7%, for inter and intra-day, respectively. The inter and intra-day precision in the measurement of QC samples, were in the range of 3.21 to 18.2% relative standard deviation (R.S.D.) and 0.32 to 20.9% R.S.D., respectively. The inter and intra-day precision in the measurement of endogenous GAGs derived disaccharides in human control plasma, were in the range of 5.8 to 15.9% R.S.D. and 1.17 to 7.74% R.S.D., respectively. Stability of the processed samples was confirmed up to 48 h in the auto-sampler. The method is simple, reliable, and easily adaptable to analysis of large number of samples under logistics of a clinical study. The present method has been used to investigate the GAGs levels in the plasma of patients in a phase II clinical study of SB-424323.
    [Abstract] [Full Text] [Related] [New Search]