These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cytochrome P-450 4F18 is the leukotriene B4 omega-1/omega-2 hydroxylase in mouse polymorphonuclear leukocytes: identification as the functional orthologue of human polymorphonuclear leukocyte CYP4F3A in the down-regulation of responses to LTB4.
    Author: Christmas P, Tolentino K, Primo V, Berry KZ, Murphy RC, Chen M, Lee DM, Soberman RJ.
    Journal: J Biol Chem; 2006 Mar 17; 281(11):7189-96. PubMed ID: 16380383.
    Abstract:
    Leukotriene B(4) (LTB(4)) is a potent chemoattractant for polymorphonuclear leukocytes (PMN) and other cells. Human PMN inactivate LTB(4) by omega-oxidation catalyzed by cytochrome P-450 (CYP) 4F3A. The contribution of the enzymatic inactivation of LTB(4) by CYP4Fs to down-regulating functional responses of cells to LTB(4) is unknown. To elucidate the role of CYP4F-mediated inactivation of LTB(4) in terminating the responses of PMN to LTB(4) and to identify a target for future genetic studies in mice, we have identified the enzyme that catalyzes the omega-1 and omega-2 oxidation of LTB(4) in mouse myeloid cells as CYP4F18. As determined by mass spectrometry, this enzyme catalyzes the conversion of LTB(4) to 19-OH LTB(4) and to a lesser extent 18-OH LTB(4). Inhibition of CYP4F18 resulted in a marked increase in calcium flux and a 220% increase in the chemotactic response of mouse PMN to LTB(4). CYP4F18 expression was induced in bone marrow-derived dendritic cells by bacterial lipopolysaccharide, a ligand for TLR4, and by poly(I.C), a ligand for TLR3. However, when bone marrow-derived myeloid dendritic cells trafficked to popliteal lymph nodes from paw pads, the expression of CYP4F18 was down-regulated. The results identify CYP4F18 as a critical protein in the regulation of LTB(4) metabolism and functional responses in mouse PMN and identify it as the functional orthologue of human PMN CYP4F3A.
    [Abstract] [Full Text] [Related] [New Search]