These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dynamic instability of microtubules: effect of catastrophe-suppressing drugs.
    Author: Mishra PK, Kunwar A, Mukherji S, Chowdhury D.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051914. PubMed ID: 16383652.
    Abstract:
    Microtubules are stiff filamentary proteins that constitute an important component of the cytoskeleton of cells. These are known to exhibit a dynamic instability. A steadily growing microtubule can suddenly start depolymerizing very rapidly; this phenomenon is known as a "catastrophe." However, often a shrinking microtubule is "rescued" and starts polymerizing again. Here we develop a model for the polymerization-depolymerization dynamics of microtubules in the presence of catastrophe-suppressing drugs. Solving the dynamical equations in the steady state, we derive exact analytical expressions for the length distributions of the microtubules tipped with drug-bound tubulin subunits as well as those of the microtubules, in the growing and shrinking phases, tipped with drug-free pure tubulin subunits. We also examine the stability of the steady-state solutions.
    [Abstract] [Full Text] [Related] [New Search]