These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence of DNA end processing.
    Author: Sanchez H, Kidane D, Castillo Cozar M, Graumann PL, Alonso JC.
    Journal: J Bacteriol; 2006 Jan; 188(2):353-60. PubMed ID: 16385024.
    Abstract:
    The recognition and processing of double-strand breaks (DSBs) to a 3' single-stranded DNA (ssDNA) overhang structure in Bacillus subtilis is poorly understood. Mutations in addA and addB or null mutations in recJ (DeltarecJ), recQ (DeltarecQ), or recS (DeltarecS) genes, when present in otherwise-Rec+ cells, render cells moderately sensitive to the killing action of different DNA-damaging agents. Inactivation of a RecQ-like helicase (DeltarecQ or DeltarecS) in addAB cells showed an additive effect; however, when DeltarecJ was combined with addAB, a strong synergistic effect was observed with a survival rate similar to that of DeltarecA cells. RecF was nonepistatic with RecJ or AddAB. After induction of DSBs, RecN-yellow fluorescent protein (YFP) foci were formed in addAB DeltarecJ cells. AddAB and RecJ were required for the formation of a single RecN focus, because in their absence multiple RecN-YFP foci accumulated within the cells. Green fluorescent protein-RecA failed to form filamentous structures (termed threads) in addAB DeltarecJ cells. We propose that RecN is one of the first recombination proteins detected as a discrete focus in live cells in response to DSBs and that either AddAB or RecQ(S)-RecJ are required for the generation of a duplex with a 3'-ssDNA tail needed for filament formation of RecA.
    [Abstract] [Full Text] [Related] [New Search]