These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Over-expression of heme oxygenase-1 by adenoviral gene transfer improves pregnancy outcome in a murine model of abortion.
    Author: Zenclussen ML, Anegon I, Bertoja AZ, Chauveau C, Vogt K, Gerlof K, Sollwedel A, Volk HD, Ritter T, Zenclussen AC.
    Journal: J Reprod Immunol; 2006 Feb; 69(1):35-52. PubMed ID: 16386310.
    Abstract:
    Mammalian pregnancy is a complex phenomenon allowing the maternal immune system to support its allogeneic fetus. Physiological pathways protecting the fetus from rejection are thought to be comparable with those leading to allograft acceptance. Heme oxygenase (HO)-1 is known to protect locally against rejection in transplantation models due to its anti-oxidant, anti-inflammatory and cytoprotective functions. Based on previous data on low HO-1 levels in placenta from mice undergoing abortion, we hypothesized that an up-regulation of HO-1 during pregnancy would avoid fetal rejection in the murine abortion combination CBA/J x DBA/2J, using BALB/c-mated CBA/J as normal controls. We injected pregnant mice undergoing abortion with 1 x 10(5) PFU of an adenoviral vector containing HO-1 and GFP (AdHO-1/GFP), and compared the pregnancy outcome with PBS- or 1 x 10(5) AdEGFP-treated abortion-prone mice and with PBS-treated normal pregnant mice. The abortion rate diminished significantly after adenoviral gene transfer of AdHO-1/GFP. The systemic and local IL-4/IFN-gamma ratio was augmented in AdHO-1-treated mice compared to abortion-prone mice. Interestingly, the HO-1 treatment up-regulated the ratio IL-10/TNF-alpha in spleen but not in decidual lymphocytes. HO-1-treated mice further showed diminished apoptosis rate and increased Bag-1 mRNA levels at the materno-fetal interface. Thus, we propose HO-1 as a key regulator of pregnancy success. HO-1 would exert its action by locally up-regulating the Th2/Th1 cytokine ratio and by further protecting tissues from apoptosis.
    [Abstract] [Full Text] [Related] [New Search]