These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structure investigation of codeine drug using mass spectrometry, thermal analyses and semi-emperical molecular orbital (MO) calculations. Author: Zayed MA, Hawash MF, Fahmey MA. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2006 May 15; 64(2):363-71. PubMed ID: 16386458. Abstract: Codeine is an analgesic with uses similar to morphine, but it has a mild sedative effect. It is preferable used as phosphate form and it is often administrated by mouth with aspirin or paracetamol. Therefore, it is important to investigate its structure to know the active groups and weak bonds responsible for its medical activity. Consequently in the present work, codeine was investigated by mass spectrometry and thermal analyses (TG, DTG and DTA) and confirming by semi-empirical MO-calculation (PM3 method) in the neutral and positively charged forms of the drug. Some results of studying the d-block element complexes of codeine were used to declare the relationship between drug structure and its chemical reactivity in vitro system. The mass spectra and thermal analyses fragmentation pathways were proposed and compared to each other to select the most suitable scheme representing the correct fragmentation of this drug. From EI mass spectra, the main primary cleavage site of the charged drug molecule is that due to beta-cleavage to nitrogen atom in its skeleton. It occurs in two parallel mechanisms with the same possibility, i.e. no difference in appearance activation energy between them. In the neutral drug form the primary site cleavage is that occurs in the ether ring. Thermal analyses of the neutral form of the drug revealed the high response of the drug to the temperature variation with very fast rate. It decomposed in several sequential steps in the temperature range 200-600 degrees C. The initial thermal fragments are very similar to that obtained by mass spectrometric fragmentation. Therefore, comparison between mass and thermal helps in selection of the proper pathway representing the fragmentation of this drug. This comparison successfully confirmed by MOC. These calculations give the bond order, charge distribution, heat of formation and possible hybridization of some atoms in different position of the drug skeleton. This helps the successful choice of the weakest bond at which both mass and thermal fragmentation occurs. Therefore, the best fragmentation pathway of this drug is correctly selected. The effect of such fragmentation on the drug behavior in the human body can be expected as a result of comparing these data with that obtained on studying codeine metal complexes using mass and thermal fragmentation techniques.[Abstract] [Full Text] [Related] [New Search]