These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cleavage with phospholipase of the lipid anchor in the cell adhesion molecule, csA, from Dictyostelium discoideum. Author: Yoshida M, Sakuragi N, Kondo K, Tanesaka E. Journal: Comp Biochem Physiol B Biochem Mol Biol; 2006 Feb; 143(2):138-44. PubMed ID: 16388974. Abstract: A cell adhesion molecule, 80-kDa csA, is involved in EDTA-resistant cell contact at the aggregation stage of Dictyostelium discoideum. A 31-kDa csA was isolated from the 80-kDa csA by treatment with Achromobacter protease I. Results from thin-layer chromatography and MALDI-TOF MS analysis indicated that the 31-kDa csA contains ceramide as a component of glycosylphosphatidyl-inositol (GPI). Comparison between the 80-kDa csA and the 31-kDa csA treated with phosphatidylinositol-specific phospholipase C (PI-PLC) or GPI-specific phospholipase D (GPI-PLD) was carried out. Our results indicated that the GPI-anchor of the 31-kDa csA was more sensitive to PI-PLC treatment than that of the 80-kDa csA, and that the anchor in both was easily cleaved by GPI-PLD treatment. They suggested that the resistance of 80-kDa csA to PI-PLC treatment was due to steric hindrance and myo-inositol modification. The results of the 80-kDa csA and the 31-kDa csA treated with sphingomyelinase were similar to those with PI-PLC treatment. In the presence of 1,10-phenanthroline, a GPI-PLD inhibitor, development of Dictyostelium was markedly inhibited, suggesting that GPI-PLD is functional in developmental regulation through cell adhesion.[Abstract] [Full Text] [Related] [New Search]