These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tissue-specific distribution of the NAD(+)-dependent isoform of 11 beta-hydroxysteroid dehydrogenase.
    Author: Walker BR, Campbell JC, Williams BC, Edwards CR.
    Journal: Endocrinology; 1992 Aug; 131(2):970-2. PubMed ID: 1639034.
    Abstract:
    11 beta-hydroxysteroid dehydrogenase (11 beta-OHSD) converts the active glucocorticoid corticosterone to inactive 11-dehydrocorticosterone in rat (or cortisol to cortisone in man), thereby protecting renal mineralocorticoid receptors from corticosterone or cortisol and allowing preferential access for aldosterone. Recent work suggests that a nicotinamide adenine dinucleotide (NAD+)-dependent 11 beta-OHSD isoform is expressed in distal renal tubule, in contrast with the hepatic isoform which is NAD(+)-phosphate (NADP+)-dependent. To establish the distribution of the NAD(+)-dependent isoform we measured in vitro conversion of [3H]corticosterone to [3H]11-dehydrocorticosterone in homogenized rat tissues in the presence of NADP+ or NAD+. In most tissues (liver, testis, hippocampus, heart, aorta, mesenteric artery) NADP+ increased activity and NAD+ was without effect. However, in whole renal cortex, colon, placenta, and lung both NADP+ and NAD+ increased activity. No difference in cofactor utilization was demonstrated between proximal and distal renal tubules following density gradient separation. This distribution of NAD(+)-dependent activity corresponds with: (i) the distribution of multiple mRNA and/or protein species of 11 beta-OHSD; (ii) the distribution of aldosterone-specific mineralocorticoid receptors; and (iii) the equilibrium between active and inactive glucocorticoids in each tissue. We suggest that the tissue-specific expression of isoforms of 11 beta-OHSD with different kinetic properties confers on them diverse roles in modulating corticosteroid receptor activation.
    [Abstract] [Full Text] [Related] [New Search]