These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anaphylactic release of mucosal mast cell granule proteases: role of serpins in the differential clearance of mouse mast cell proteases-1 and -2. Author: Pemberton AD, Wright SH, Knight PA, Miller HR. Journal: J Immunol; 2006 Jan 15; 176(2):899-904. PubMed ID: 16393974. Abstract: The granule-derived mouse mast cell proteases-1 and -2 (mMCP-1 and -2) colocalize in similar quantities in mucosal mast cells but micrograms of mMCP-1 compared with nanograms of mMCP-2 are detected in peripheral blood during intestinal nematode infection. This differential systemic response was investigated both in vitro and in vivo. Bone marrow-derived mucosal mast cell homologs released similar quantities of mMCP-1 and-2 concomitantly with beta-hexosaminidase in response to calcium ionophore ( approximately 60% release) or IgE/DNP (25% release). In contrast, serum from mice sensitized by infection with Nippostrongylus brasiliensis 10 days earlier contained >1500-fold more mMCP-1 (10,130 +/- 1,609 ng/ml) than mMCP-2 (6.4 +/- 1 ng/ml), but, in gut lumen, the difference was approximately 8-fold. After OVA sensitization, >600-fold more mMCP-1 (7,861 +/- 2,209 ng/ml) than mMCP-2 (12.8 +/- 4.7 ng/ml) was present in blood 1 h after challenge, but, in gut lumen, there were relatively comparable levels of mMCP-1 and -2. To estimate the rates of systemic accumulation and clearance, 10 microg of mMCP-1 or -2 was injected i.p. Plasma levels of injected mMCP-2 peaked (1%) at 15 min then declined, whereas levels of mMCP-1 were maximal (approximately 25%) at 3 h. Inactivation of mMCP-1 with PMSF before injection resulted in mMCP-2-like kinetics, but inhibition of mMCP-1 by serum gave kinetics similar to that of native mMCP-1. mMCP-1 isolated from serum is complexed with serpins and we conclude that both the accumulation and the longevity of mMCP-1 in blood is due to complex formation, protecting it from a pathway that rapidly clears mMCP-2, which is unable to form complexes with serpins.[Abstract] [Full Text] [Related] [New Search]