These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A sulfated disaccharide derived from chondroitin sulfate proteoglycan protects against inflammation-associated neurodegeneration. Author: Rolls A, Cahalon L, Bakalash S, Avidan H, Lider O, Schwartz M. Journal: FASEB J; 2006 Mar; 20(3):547-9. PubMed ID: 16396993. Abstract: Chondroitin sulfate proteoglycan (CSPG), a matrix protein that occurs naturally in the central nervous system (CNS), is considered to be a major inhibitor of axonal regeneration and is known to participate in activation of the inflammatory response. The degradation of CSPG by a specific enzyme, chondroitinase ABC, promotes repair. We postulated that a disaccharidic degradation product of this glycoprotein (CSPG-DS), generated following such degradation, participates in the modulation of the inflammatory responses and can, therefore, promote recovery in immune-induced neuropathologies of the CNS, such as experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune uveitis (EAU). In these pathologies, the dramatic increase in T cells infiltrating the CNS is far in excess of the numbers needed for regular maintenance. Here, we show that CSPG-DS markedly alleviated the clinical symptoms of EAE and protected against the neuronal loss in EAU. The last effect was associated with a reduction in the numbers of infiltrating T cells and marked microglia activation. This is further supported by our in vitro results indicating that CSPG-DS attenuated T cell motility and decreased secretion of the cytokines interferon-gamma and tumor necrosis factor-alpha. Mechanistically, these effects are associated with an increase in SOCS-3 levels and a decrease in NF-kappaB. Our results point to a potential therapeutic modality, in which a compound derived from an endogenous CNS-resident molecule, known for its destructive role in CNS recovery, might be helpful in overcoming inflammation-induced neurodegenerative conditions.[Abstract] [Full Text] [Related] [New Search]