These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sedation and memory: studies with a histamine H-1 receptor antagonist.
    Author: Turner C, Handford AD, Nicholson AN.
    Journal: J Psychopharmacol; 2006 Jul; 20(4):506-17. PubMed ID: 16401664.
    Abstract:
    The influence of sedation on the effect of an H-1 receptor antagonist on various cognitive functions, including memory, were evaluated. Diphenhydramine (50, 75 and 100 mg) and lorazepam (0.5 and 1.5 mg) were given on single occasions to 12 healthy volunteers (six males, six females) aged 20-33 (mean 23.4) years. Subjective assessments of sedation, sleep latencies, digit symbol substitution, choice reaction time, sustained attention and memory recall were studied 1.0 h before and 0.5, 2.0 and 3.5 h after drug ingestion. The study was double blind, placebo controlled and with a crossover design. With all doses of diphenhydramine there was subjective sedation, reduced sleep latencies and impairments in performance on the digit symbol substitution, choice reaction time and sustained attention tasks. No effects were observed with 0.5 mg lorazepam. With 1.5 mg lorazepam there was subjective sedation, fewer digit symbol substitutions, slowed choice reaction time, impaired attention and memory, but no effect on sleep latencies. Contrast analysis of data measured at all time points showed that although there was no difference in the effect of diphenhydramine (100 mg) and lorazepam (1.5 mg) on those tasks without a memory component, response times were slower with lorazepam on those tasks with a memory component. However, both 100 mg diphenhydramine and 1.5 mg lorazepam impaired prompted recall measured at 2 h post-ingestion only. It is considered that impaired memory is not necessarily associated with sedation, and that impairment of memory with drugs that lead to sedation may be effected through neuronal systems independent of those that affect arousal.
    [Abstract] [Full Text] [Related] [New Search]