These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alcohol-induced impairment of neuronal nitric oxide synthase (nNOS)-dependent dilation of cerebral arterioles: role of NAD(P)H oxidase.
    Author: Sun H, Molacek E, Zheng H, Fang Q, Patel KP, Mayhan WG.
    Journal: J Mol Cell Cardiol; 2006 Feb; 40(2):321-8. PubMed ID: 16403412.
    Abstract:
    The goal of the present study was to determine the role of NAD(P)H oxidase in alcohol consumption-induced impairment of nNOS-dependent reactivity in cerebral arterioles. Sprague-Dawley rats were fed an alcohol diet for 2-3 months. We measured the effects of acute (1 hour) and chronic (1 month) treatment with a NAD(P)H oxidase inhibitor, apocynin, on responses of parietal pial arterioles to nNOS-dependent agonists (NMDA and kainate) and an nitric oxide synthase (NOS)-independent agonist (nitroglycerin). In addition, we measured the expression of NAD(P)H oxidase subunits and superoxide production in parietal cortex. Topical application of NMDA and kainate produced dose-related dilation of pial arterioles. However, the magnitude of vasodilation to these agonists was significantly less in alcohol-fed rats. Treatment with apocynin (acute and chronic) did not alter vasodilation in nonalcohol-fed rats, but significantly improved vasodilation in alcohol-fed rats. Response of pial arterioles to nitroglycerin was similar in nonalcohol-fed and alcohol-fed rats, and was not affected by apocynin. In addition, we found an up-regulation of gp91phox and p47phox in parietal cortex of alcohol-fed rats. Finally, alcohol consumption produced an increase in superoxide production under basal conditions and in the presence of NADPH. Acute treatment with apocynin suppressed alcohol consumption-induced superoxide generation. Our findings suggest that NAD(P)H oxidase plays an important role in chronic alcohol consumption-induced impairment of nNOS-dependent dilation of cerebral arterioles.
    [Abstract] [Full Text] [Related] [New Search]