These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphorylation sites on calcium channel alpha1 and beta subunits regulate ERK-dependent modulation of neuronal N-type calcium channels. Author: Martin SW, Butcher AJ, Berrow NS, Richards MW, Paddon RE, Turner DJ, Dolphin AC, Sihra TS, Fitzgerald EM. Journal: Cell Calcium; 2006 Mar; 39(3):275-92. PubMed ID: 16406008. Abstract: Voltage-dependent calcium channels (VDCCs) in sensory neurones are tonically up-regulated via Ras/extracellular signal regulated kinase (ERK) signalling. The presence of putative ERK consensus sites within the intracellular loop linking domains I and II of neuronal N-type (Ca(v)2.2) calcium channels and all four neuronal calcium channel beta subunits (Ca(v)beta), suggests that Ca(v)2.2 and/or Ca(v)betas may be ERK-phosphorylated. Here we report that GST-Ca(v)2.2 I-II loop, and to a lesser extent Ca(v)beta1b-His(6), are substrates for ERK1/2 phosphorylation. Serine to alanine mutation of Ser-409 and/or Ser-447 on GST-Ca(v)2.2 I-II loop significantly reduced phosphorylation. Loss of Ser-447 reduced phosphorylation to a greater extent than mutation of Ser-409. Patch-clamp recordings from wild-type Ca(v)2.2,beta1b,alpha2delta1 versus mutant Ca(v)2.2(S447A) or Ca(v)2.2(S409A) channels revealed that mutation of either site significantly reduced current inhibition by UO126, a MEK (ERK kinase)-specific inhibitor that down-regulates ERK activity. However, no additive effect was observed by mutating both residues together, suggesting some functional redundancy between these sites. Mutation of both Ser-161 and Ser-348 on Ca(v)beta1b did not significantly reduce phosphorylation but did reduce UO126-induced current inhibition. Crucially, co-expression of Ca(v)2.2(S447A) with Ca(v)beta1b(S161,348A) had an additive effect, abolishing the action of UO126 on channel current, an effect not seen when Ca(v)beta1b(S161,348A) was co-expressed with Ca(v)2.2(S409A). Thus, Ser-447 on Ca(v)2.2 and Ser-161 and Ser-348 of Ca(v)beta1b appear to be both necessary and sufficient for ERK-dependent modulation of these channels. Together, our data strongly suggest that modulation of neuronal N-type VDCCs by ERK involves phosphorylation of Ca(v)2.2alpha1 and to a lesser extent possibly also Ca(v)beta subunits.[Abstract] [Full Text] [Related] [New Search]