These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Author: Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG. Journal: Nat Chem Biol; 2005 Sep; 1(4):223-32. PubMed ID: 16408039. Abstract: Programmed death (apoptosis) is turned on in damaged or unwanted cells to secure their clean and safe self-elimination. The initial apoptotic events are coordinated in mitochondria, whereby several proapoptotic factors, including cytochrome c, are released into the cytosol to trigger caspase cascades. The release mechanisms include interactions of B-cell/lymphoma 2 family proteins with a mitochondria-specific phospholipid, cardiolipin, to cause permeabilization of the outer mitochondrial membrane. Using oxidative lipidomics, we showed that cardiolipin is the only phospholipid in mitochondria that undergoes early oxidation during apoptosis. The oxidation is catalyzed by a cardiolipin-specific peroxidase activity of cardiolipin-bound cytochrome c. In a previously undescribed step in apoptosis, we showed that oxidized cardiolipin is required for the release of proapoptotic factors. These results provide insight into the role of reactive oxygen species in triggering the cell-death pathway and describe an early role for cytochrome c before caspase activation.[Abstract] [Full Text] [Related] [New Search]