These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Magnetic resonance angiography of collateral vessel growth in a rabbit femoral artery ligation model. Author: de Lussanet QG, van Golde JC, Beets-Tan RG, de Haan MW, Zaar DV, Post MJ, Huijberts MS, Schaper NC, van Engelshoven JM, Backes WH. Journal: NMR Biomed; 2006 Feb; 19(1):77-83. PubMed ID: 16411251. Abstract: Collateral vessel growth was visualized in a rabbit femoral artery ligation model by serial contrast-enhanced magnetic resonance angiography (MRA) at 1.5 T in comparison with X-ray angiography (XRA). XRA and MRA were performed directly after femoral artery ligation (day 0+) and after 7 and 21 days. XRA (in-plane resolution, 0.3x0.3 mm) was performed with arterial catheterization for fast injection of iodinated contrast agent just proximal to the aortic bifurcation. MRA (in-plane, 0.6x0.6 mm) was performed at 1.5 T with a five-element phased-array coil and slow injection of gadolinium-based MR contrast agent into an ear vein. Collateral vessel scores on two-dimensional XRA projections and on three-dimensional digitally subtracted rotational MRA maximum intensity projections were obtained by two observers and compared. Collateral vessel counts and minimal detectable vessel diameters for MRA and XRA were combined in a computational flow model to interpret differences in spatial detection limits between imaging modalities in terms of flow. Collateral vessel scores were significantly higher in the ligated limb at day 7 (P < 0.05) and more so at day 21 (P < 0.001), in comparison with day 0+ or in the non-ligated control limb on both XRA and MRA. Significantly more (smaller) vessels were visualized with XRA than with MRA, particularly on day 21 (P < 0.05). Inter-observer agreement was high for both XRA (kappa = 0.82) and MRA (kappa = 0.78). The flow model showed that collateral vessels with diameters > 0.3 mm scored by XRA as well as MRA represent nearly 100% of the total blood flow, whereas smaller (0.1-0.3 mm diameter) vessels that can only be detected with XRA contribute little to the blood flow. Serial contrast-enhanced MRA can non-invasively visualize sub-millimeter collateral vessels that represent nearly 100% of the restored blood flow, in a femoral artery ligation model.[Abstract] [Full Text] [Related] [New Search]